Pii: S0893-6080(99)00096-9

نویسندگان

  • Martin C.M. Elliffe
  • Edmund T. Rolls
  • Néstor Parga
  • Alfonso Renart
چکیده

This paper describes an investigation of a recurrent artificial neural network which uses association to build transform-invariant representations. The simulation implements the analytic model of Parga and Rolls [(1998). Transform-invariant recognition by association in a recurrent network. Neural Computation 10(6), 1507–1525.] which defines multiple (e.g. “view”) patterns to be within the basin of attraction of a shared (e.g. “object”) representation. First, it was shown that the network could store and correctly retrieve an “object” representation from any one of the views which define that object, with capacity as predicted analytically. Second, new results extended the analysis by showing that correct object retrieval could occur where retrieval cues were distorted; where there was some association between the views of different objects; and where connectivity was diluted, even when this dilution was asymmetric. The simulations also extended the analysis by showing that the system could work well with sparse patterns; and showing how pattern sparseness interacts with the number of views of each object (as a result of the statistical properties of the pattern coding) to give predictable object retrieval performance. The results thus usefully extend a recurrent model of invariant pattern recognition. q 2000 Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two methods for encoding clusters

This paper presents two methods for generating numerical codes representing clusters of Rn, while preserving various topological properties of data spaces. This is useful for networks whose input, or eventually output, consists of unordered sets of points. The first method is the best one from a theoretical point of view, while the second one is more usable for large clusters in practice.

متن کامل

A recurrent model of transformation invariance by association

This paper describes an investigation of a recurrent artificial neural network which uses association to build transform-invariant representations. The simulation implements the analytic model of Parga and Rolls [(1998). Transform-invariant recognition by association in a recurrent network. Neural Computation 10(6), 1507-1525.] which defines multiple (e.g. "view") patterns to be within the basi...

متن کامل

Pii: S0893-6080(00)00062-9

This article gives an overview of the different functional brain imaging methods, the kinds of questions these methods try to address and some of the questions associated with functional neuroimaging data for which neural modeling must be employed to provide reasonable answers. q 2000 Published by Elsevier Science Ltd.

متن کامل

Pii: S0893-6080(99)00042-8

This paper presents a theoretical analysis on the asymptotic memory capacity of the generalized Hopfield network. The perceptron learning scheme is proposed to store sample patterns as the stable states in a generalized Hopfield network. We have obtained that …n 2 1† and 2n are a lower and an upper bound of the asymptotic memory capacity of the network of n neurons, respectively, which shows th...

متن کامل

Pii: S0893-6080(99)00058-1

The aim of the paper is to investigate the application of control schemes based on “internal models” to the stabilization of the standing posture. The computational complexities of the control problems are analyzed, showing that muscle stiffness alone is insufficient to carry out the task. The paper also re-visits the concept of the cerebellum as a Smith’s predictor. q 1999 Elsevier Science Ltd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000